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SUMMARY 
A simple and efficient approximate numerical technique is presented to obtain solutions to a wide class of 
two-point boundary value similarity problems in fluid mechanics. This technique is based on the common 
finite difference method with central differencing, a tridiagonal matrix manipulation and an iterative 
procedure. The technique described in this paper has been successfully applied to three different representat- 
ive similarity problems of fluid mechanics. Each one of these problems is described by a coupled, non-linear 
system of three ordinary differential equations and has already been solved elsewhere using a different 
numerical method. So, the obtained numerical results, by our efficient numerical technique, permit a com- 
parative study and show the accuracy and the effectiveness of this technique. 

KEY WORDS Similarity problems Numerical solution methods Finite difference method Iterative procedure 

1. INTRODUCTION 

Many contemporary problems of interest in fluid mechanics, are reduced, by introduction of 
suitable similarity or  pseudo-similarity variables, to a non-linear and coupled system of ordinary 
differential equations with their appropriate boundary conditions. A variety of numerical 
methods have been devised for dealing with such two-point boundary value problems. So, Wang 
and Kleinstreuer’ presented a boundary layer analysis of orthogonal free-forced convection on 
a heated and cooled plate with fluid injection or suction. They used a two-point finite difference 
technique with Newton’s linearization method’ to solve the dimensionless system of equations 
and associated boundary conditions. A uniform grid in the [-direction was employed with a total 
of 101 grid points and a variable mesh density was needed in order to accomodate steep gradients 
near the plate surface. Actually, they solved the finite difference equations of their problem, by the 
so-called ‘Block-elimination method’ which is a general one and can be used for any number of 
first-order equations and for a wide range of boundary conditions. However, the amount of 
algebra involved in applying this method gets extremely tedious. The laminar mixed convection 
in a radially rotating semiporous channel was studied by Soong and Hwang3 The set of the 
governing equations was a sixth-order quasilinear system with three boundary conditions at each 

027 1-2091/93/140145-18$14.00 
0 1993 by John Wiley & Sons, Ltd. 

Received May 1992 
Revised March 1993 



146 N. G. KAFOUSSIAS AND E. W. WILLIAMS 

end of the finite interval 0 I y I 1. They converted the boundary-value problem to an initial-value 
counterpart and solved it by using a fourth-order Runge-Kutta scheme with the modified 
Newton’s method? Shang and Wang’ studied the effect of variable thermophysical properties on 
laminar free convection of gas. The governing equations for this type of flow were changed to 
dimensionless ordinary differential equations by similarity transformations and were solved by 
a shooting method.6 Wang’, using the fifth-order Runge-Kutta-Fehlberg algorithm, obtained 
a numerical solution of the mixed convection flow problem on a vertical needle with heated tip. 
He integrated numerically a set of non-linear, ordinary differential equations describing the 
boundary layers on rotating cones, discs and axisymmetric surfaces with a concentrated heat 
source using the same algorithm.’ 

Finally, Hassanien and Gorla’ studied combined forced and free convection in stagnation 
flows of micropolar fluids over a vertical non-isothermal surfaces. The authors transformed the 
system of continuity, momentum, angular momentum and energy equations into a coupled 
non-linear system of three ordinary differential equations, applying the local similarity method 
and solved it by using Merson’s method. 

The Runge-Kutta integration scheme, along with the Newton-Raphson shooting method is, 
therefore, one of the most commonly used algorithms for the solution of such two-point 
boundary value problems. Even though this method provides satisfactory results for such types of 
problems, but it may fail when applied to problems in which the differential equations are very 
sensitive to the choice of the missing initial conditions. On the other hand, a serious difficulty 
which may be encountered in boundary-value problems is the inherent instability. In Merson’s 
method, integration from one or both ends of the range usually produces rapidly increasing 
solutions which may occasionally lead to overflow before the matching point is reached. 

Another difficulty which often arises is the case in which one end of the range of integration is at 
infinity. The end-point of integration is usually approximated by assigning a finite value to this 
point; it is obtained by estimating a value at which the solution will reach its asymptotic state. The 
computing time for integrating the differential equations can sometimes depend critically on the 
quality of the initial guesses of the unknown boundary conditions, the locations of the matching 
point and the infinite end-point. 

On the contrary to the above-mentioned numerical methods, the numerical technique we 
present here has better stability characteristics, is simple, accurate and efficient. The essential 
features of this technique are the following: (i) It is based on the common finite difference method 
with central differencing (ii) on a tridiagonal matrix manipulation; and (iii) on an iterative 
procedure. 

We applied our numerical technique to three particular representative problems which have 
already been solved by different numerical methods. These problems are the following 
(i) Boundary layers on rotating cones, discs and axisymmetric surfaces with a concentrated heat 
source.’ (ii) Boundary-layer analysis of orthogonal free-forced convection on a heated and 
cooled plate with fluid injection or suction.’ (iii) Combined forced and free convection in 
stagnation flows of micropolar fluids over vertical non-isothermal surfa~es.~ To test the accuracy 
and the effectiveness of our numerical technique, we compared our results with those of Wang’ 
[problem (i)], Wang and Kleinstreuer’ [problem (ii)] and Hassanien and Gorla’ [problem (iii)] 
and they were found to be in excellent agreement. 

2. THE MATHEMATICAL MODELS 

In order to demonstrate our numerical technique, three different representative problems of fluid 
mechanics are solved here. As we stated earlier, each one of these problems has already been 



TWO-POINT BOUNDARY VALUE SIMILARITY PROBLEMS 147 

solved by a different numerical method. So, we can compare our results with those obtained by 
other authors and verify the validity of our numerical technique. 

2.1. First problem 

The first problem we consider is that of the boundary layer on rotating cones, discs and 
axisymmetric surfaces with a concentrated heat source.* The boundary layer equations on a body 
of revolution are 

a a 
ax ay 
-(ru) +- (10) = 0 (continuity), 

(momentum), 
aw aw uwdr a Z w  ~ - + U - + - - = v - -  ax a y  r dx ayz  

aT aT v aZT 
I( - + u- =- - (energy), 

ax ay Pr a y z  

(3) 

(4) 

where x ,  y are intrinsic co-ordinates along and normal to the surface, u, u are the corresponding 
velocity components, T the temperature, v the kinematic viscosity, Pr the Prandtl number, w the 
azimuthal velocity and r (x)  the surface distance to the axis of revolution. The surface of revolution 
is described by the equation 

r (x )  = AxS,  (5 )  

where A and s are positive constants. 
The family of cones are obtained by setting s = 1 and A =sin u in equation (9, where 2u is the 

vertex angle. The case 2a = 2n corresponds to the surface of an infinite flat disc. Finally, the heat 
source, of strength Q, is at the tip r = x = O  of the surface of revolution. 

Defining now the following transformations: 

s-1 
u = ARx"F'(q), u = - ( A R V ) ' / ~ X ( ~ -  { F + 2 q F' }, 

T-  T ,  
w = ARx"G(q), O(q) = - x ( ~ " + ' ) / ~  { 2 n p c , A ( A R ~ ) ~ ~ ~ } ,  

Q 
q = ( A R / V ) ' / ~  yx('- ')Iz (similarity variable), 

where p is the fluid density, c, the specific heat, R the angular velocity; F ,  G and O are the 
dimensionless stream function, azimuthal velocity and temperature, respectively. Introducing 
these transformations into equations (1)-(4), we get 

(7) 

(8) 

W+s*Pr(OF)'=O, (9) 

F"' + S* FF" + s{c2 -(F')~} = 0, 

G + S* F G  - 2sFG = 0, 
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where s*=(3s+ 1)/2, T,  is the fluid temperature away from the surface and primes denote 
differentiation with respect to q[( )’ = d( )/dq]. The boundary conditions for the problem are 

F(0)  = F’(0) = el(0) = 0, G(0) = 1, 

F’(w) = G(w) = O( 00) =O. 

The total heat flux through any surface x=constant, within the boundary layer, is 

Q=pc, 2nru(T- T,) dry c 
which yields the condition 

Hence, the system of equations and boundary conditions which describe the problem under 
consideration, and which hereafter we shall call ‘Problem 1’, is the system of equations (7)-(9), (10) 
and (12), respectively. 

2.2. Second problem 

As a second mathematical model (hereafter referred as ‘Problem 11’) for applying our numerical 
technique, we consider the boundary layer analysis of orthogonal free-forced convection on 
a heated and cooled plate with fluid injection or suction, studied by Wang and Kleinstreuer.’ The 
boundary layer equations for a horizontal heated/cooled flat plate aligned parallel to a free 
stream of velocity u,, temperature T ,  and pressure p , ,  can be written as: 

(continuity), 

where g is the acceleration due to gravity, j the coefficient of thermal expansion, z a parameter 
taking the values z =  1 (heated plate) and z =  - 1 (cooled plate) and a( = k/pc,)  is the thermal 
diffusivity . 

The associated boundary conditions are 

y=O: u=O, v =  f v w ,  T= T,=constant, or qw= 
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where +ow is the injection/suction velocity at the plate. The case T= Tw=constant corresponds 
to the uniform surface temperature (UST) case, while the case qw=constant corresponds to the 
uniform heat flux (UHF) case. 

In the present analysis, new mixed convection parameters are introduced for the above- 
mentioned cases. They index the entire range from pure forced convection (c =0) to pure free 
convection (r = 1) and serve as the dimensionless streamwise co-ordinate. So, 

c={ (oRa*)'/6/{(wRe)'/Z + ( ~ R U * ) ' / ~ )  for UHF case, 
(aRa)'/S/{wRe''2 +(oRa)'lS 1 for UST case, (18) 

where 
a = Pr/(l + Pr), o = Pr/(l + Pr)lp, Re = u,x/v, 

Ra=g/3( Tw- T,(x3/(av)  R ~ * = g ~ ( q ~ ( ~ ~ / ( a v k ) .  (19) 

Furthermore, the following transformed variables are used to facilitate the numerical solution 

q=yA/x, +=aAF- u,(x) dx, G=a(p-p,)x2/(pav14), 
J O  

O=(T- T,)/(Tw- T,) for 

and 

The dimensionless buoyancy parameter A, is defined as 
8 = ( T -  T m ) / { q w x / ( k J ) }  for 

UST case, 

UHF case. 

(wRe)'j2 + (aRa)'/' = (wRe)'l2/( 1 - rT)  = ( d b ) ' / ' / r T  for UST case, 
(oRe)'" + ( ~ R u * ) ' / ~  =(oRe)'l2/( 1 - [,) = ( ~ R u * ) ' / ~ / [ ,  for UHF case. 

The dimensionless mass transfer or blowing/suction parameter MP, is defined as 

X V W  M P =  f-. 
a l  

In assuming MP to be constant, the wall velocity varies along the plate. Specifically 

clx-112+czx-21s for UST case, 
o w - {  c3x-1/2+c4x-2/3 for UHF case, 

where c i ,  i=  1,2,3,4, are constants. _. . . . .  
Using the stream function approach, u = aY/ay, u= - aY/ax, the continuity equation is 

automatically satisfied. Substituting equations (20)-(22) into equations (14H17) we obtain 

PrF"'+aFF"-bF'2+(l+Pr){qG-dG)-MPF"=e , (26) 

G = z f O  (27) 
and 

8"+aF@-nF'8-MPB'=e F--B'-  , { aa; :} 
F(c,d)=F'(C,O)=O and O(r,O)=l or @(5,0)= -1 ,  

F'(c,co)=(l+Pr)'/3(l-c)2, G(C, m)=O and e([,oo)=O. (29) 
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In the above equations, primes denote differentiation with respect to the similarity variable q. 
Also, the coefficients in equations (26)-(29) are defined as follows: 

a=(5 + [)/lo, b =(IS, c=(5 - ()/lo, d = 2(/5, 

e=<(l-lJ/lO, f=c5, n=O, (=cT for UST case 
(30) 

and 

~ = ( 3  + [)/6,  b= </3, c =(3 - <)/6, d=21;/3, 
(31) 

e = [( 1 - ()/6,  f= C 6 ,  n = (3 - ()/6, [ = rs for UHF case 

For the special case of pure free convection ([= 1) and for the UST-case, the non-similar 
equations (26)-(28) are reduced to the following similarity equations: 

PrF”’+$ FF” -4 F2 -3  (1 + Pr) ( q G  - G)- MPF” =0, 

8” +$ FB’ - M P ~ O  
(32) 

(33) 
and 

In this case the corresponding boundary conditions become 

F(O)=F‘(O)=O, 0(0)=1, 

G = 20. 

F‘(w)=O, G(m)=O, e(w)=O. 

The system of equations (32H35) will be used for our numerical technique (Problem 11). 

(34) 

(35) 

2.3 Third problem 

As a third and last application of our numerical technique, the problem of combined forced and 
free convection in stagnation flows of micropolar fluids over vertical non-isothermal surfaces is 
solved (hereafter referred as ‘Problem 111’). This problem is governed by the following set of 
partial differential equations 

u,, + u , ~  = O  (continuity), (36) 

(37) 

(38) 

uT.x+~T,y=aT,yy  (energy), (39) 

1 dP Ic 

P dx P 
u u , , + ~ u , ~ =  - - - + v y Y y + -  N,y+gfi(T- T w )  (momentum), 

Ic Y 
PJ PJ 

uN,, + U N , ~  = - (2N + u , ~ )  + N,yy  (angular momentum), 

where N is the angular velocity, K, y are material constants, j is the microinertia per unit mass and 

The boundary conditions for the velocity and temperature field are given by the following: 

y = O  u=O, u=O,  N=O,  T=T,(x), 

Y+OO: u=U, ,  N=O, T=Tw,  (40) 
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Finally, the plus sign, in the last term of the momentum equation, indicates buoyancy assisting 
the flow, whereas the negative sign stands for buoyancy opposing the flow. 

Introducing a stream function I/I such that 

u = $ , ~  and v = - $ , ,  (41) 

the continuity equation (36) is automatically satisfied. We now introduce the following dimen- 
sionless quantities: 

B=y/uj ,  Gr,=g/?(Tw- Tw)x3/vz  a local Grashof number, 

where Rex= U,x/v is a local Reynolds number, a=proportionality constant and B, A, A are 
dimensionless material parameters. Assuming that along the stagnation line the terms containing 
( ),< are negligible (local similarity approach to the stagnation point problem), the system of 
equations (3 7)-( 39) becomes 

(1 +A) F”’ + FF” -(F’)’ + AG’ = - 1 T re, 
L G  -AB(2G + F”)-  G F  + F G  =O, 

V + P r  F8’=Pr x - F 8  (Tw-Tw) ,  {: }/ (45) 

where Pr is the Prandtl number and primes indicate differentiation with respect to q. It is noted 
that a similarity solution exists if [Tw(x)- T,] = b y ,  n =O or n= 1. The case n= 1 corresponds to 
an exact similarity solution, while the case n = 0 to a local similarity one. So, the problem under 
consideration along with restrictions given by 

T,,,(x)- T,=bx”, n=O, 1 (46) 
may be written as 

(1 +A) F”’+FF” -(F’)’ + A G  + 1 & @=O, (47) 

3. NUMERICAL SOLUTION METHOD 

The purpose of this work is the development of a new approximate technique, to calculate the 
numerical solution of a class of similarity problems in fluid mechanics. We first demonstrate this 
technique by solving the system of equations (7)-(9) of Problem I. 
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3.1. Problem I 
Equation (7) can be written as 

F' + s * F F  - s F  F' = -sG2 

So, it can be considered as a second-order linear ordinary differential equation in y=F'(q) if G(q) 
and an approximation F(q)  [or F(q)] are known. In this case equation (51) can be written as 

(F' )" + s*F (F' )' - s F  (F' ) = - s G2 or y " = p (q) y' + 4 (q) y + r (q) , (52) 

where y(q) = F'(q), p(q) = - s*F(q), q(q) = sF'(q) and r(q) = - sG2(q). Equation (52) can be solved 
now by a common finite difference method, based on central differencing and tridiagonal matrix 
manipulation. It can be shown'O that when using the above-mentioned difference method, in the 
case where p, q and r are continuous functions of q on the closed interval [0, q , ] ,  with q(q) 2 0 on 
this interval, then the solution to equation (52), together with boundary conditions y(O)= a and 
y ( q m )  = j?, where a, j? are real constants, is unique provided the step size h <2/L,  where 
L=max(p(q)(, 0 5  q I?, . On the other hand it is necessary to establish that y(4) is continuous on 
[0, q , ]  in order to ensure that the truncation error of this method has order O(hZ). 

Hence, to start the solution procedure it is necessary to assume distribution curves for F(q) and 
G(q) between q = 0 and q = q ,  (q- t  co) which satisfy the boundary conditions (10). These selected 
curves can be quite arbitrary as long as they satisfy the boundary conditions. For example, 
F'(q)=(l -qIq,) (qlq,) and G(q)=(l -qlq,) can be used as first inputs. The F(q)  distribution is 
obtained by integrating the assumed F'(q) curve. G(q) is then retained, whilst the momentum 
equation (51) is solved, using an algorithm employing a tridiagonal scheme, enabling a new 
approximation for F'(q) to be produced. The F(q)  distribution is updated by integrating the new 
F ( q )  curve. These new profiles of F(q) and F(q) are then used for new inputs and so on. So, the 
momentum equation (52) is solved iteratively until convergence is attained. The criterion of 
convergence involves the values of the physically important gradient F"(0). The iterations stop 
when the difference in the values of F"(O) ,  between two successive iterations, are less than a small 
quantity E. 

The converged profile of F'(q) [or F ( q ) ]  is then used to solve equation (8), using the same 
algorithm, but without iterations now, producing thus a new approximation for G(q). In this case 
we have y(q) = G(q). 

Next, the computational procedure reverts to its original starting point using the most current 
distributions of F'(q) and G(q) as inputs. This process is continued until final convergence is 
attained viz. the changes in F"(0) and G(0) are within a certain specified tolerance E of, say, less 
than in magnitude. After F ( q )  is obtained the solution of the energy equation (9) under 
boundary conditions (10) and (12) can easily be obtained. Equation (9) can be written as 

W'+s*PrFB'+s*PrF'B=O (53) 
So, equation (53) is a second-order linear ordinary differential equation in y(q) = e(q), with known 
coefficients. Consequently, it can be solved at once by applying the above-mentioned algorithm. 
In order to apply our numerical technique a proper step size h = Aq and an appropriate q ,  value, 
as an approximation to y= co, are determined by the trial-and-error method, the criterion being 
the stability of physically important gradients F"(0) and G(0). It was found that a step size 
Aq =0025 is sufficient to provide accurate numerical results. Sometimes, to avoid divergence of 
the iterative procedure, as applied to the momentum equation, under-relaxation is employed, 
with an under-relaxation factor of 0-5. The whole numerical procedure is shown in a flow-chart 
presented in Figure 1 for a more general case of a boundary value problem (Problem 111). 
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Figure 1. Flow chart of the computer program for the approximation numerical technique 

3.2. Problem II 

We can proceed now to apply our numerical technique, in a similar manner, to solve the system 
of equations (32)-(34) subject to boundary conditions (35). The momentum equation (32) can be 
written as 

Y"=p(rl)Y'+q(tl)Y+t(rl), (54) 
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where 

y=F(q),  p(q)=(MP-3F/5)/Pr, 4(q)=F’/SPr 

and 

r (q)  = - 2( 1 + Pr) ( q G  - G)/5Pr. 

Hence, equation (32) can be solved by exactly the same method as equation (52). To start the 
numerical procedure we assume distribution curves F(q) and O(q) satisfying their boundary 
conditions (35). The F distribution is obtained by integrating the assumed F(q) curve, whereas 
the G‘ distribution is already known from equation (34). The function G(q) is then obtained by 
integrating the G [  = 8(q)] distribution, using the condition G(oo)=O. After that, the momentum 
equation is solved iteratively and the whole procedure is continued in a quite similar manner as in 
Problem I. The convergence criterion for the solution here also involves values of the physically 
important gradients F“(O), el(0) and G(0). 

It is worth noting that the momentum equation in Problem I, as well as in Problem 11, contains 
only the unknown function G (and/or G) .  In Problem I, G is the non-dimensional azimuthal 
velocity; whereas in Problem 11, G is the non-dimensional temperature. So, the iterative proced- 
ure takes place, mainly, between the two first equations of the systems (7)-(9) and (32)-(34) 
governing Problems I and 11, respectively. 

3.3 Problem 111 

A more general case is presented in the solution of this problem. It is known that in free 
convection problems there is a flow-thermal coupling. In this case the momentum equation (47), 
contains not only the dimensionless microrotation G, but the dimensionless temperature 8 as 
well. So, the system of equations (47)-(49) is more general than the previous ones and the solution 
methodology of this problem, constitutes a generalization of our numerical technique. 

In the system of equations (47)-(49) we have also to consider the variation of the following 
parameters: (i) the Prandtl number Pr, (ii) the buoyancy parameter {, (iii) the integer n and 
(iv) the dimensionless material parameters B, A and A. During the course of the numerical 
solution of the system (47)-(50) all these dimensionless parameters take various values. The 
values of the integer n=O and n= 1 correspond to the isothermal wall case and the linear wall 
temperature case, respectively. 

We proceed now to solve the system of equations (47)-(49) as follows. Equation (47) can be 
considered as a second-order linear ordinary differential equation in F(q) if G(q), 8(q) and an 
approximation to F(q)  and F(q) are known. For instance, equation (47) can be written as 

(1 + A)(F’)” + F(F‘)’-F’(F’)= - A G  - 1 T t8 
or 

(55) 

Y’’(tl) = P ( V )  Y ’ ( d  + 4 h )  Y (tl) + I ‘ (v t ) ,  

y(q)=F(q) ,  p(q)=  -F(q)/(l +A), q(q)=F‘(q) I(1 +A) and r (V )= ( -AG- I  T Ye) I(1 +A)- 

(56) 

where 

(57) 

So, it can be solved by the above-mentioned finite difference method based on central differencing 
and tridiagonal matrix manipulation. To start the solution procedure, for given values of the 
dimensionless parameters Pr, B, A, ,I and t, it is again necessary to assume distribution curves for 
F ,  G and 8 between q = 8 and q =qm. The selected curves can be quite arbitrary as long as they 
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satisfy the boundary conditions (50). The F distribution is obtained by integrating the assumed F’ 
curve. In this case G and 8 distributions are then held fixed and the momentum equation (47) or 
(55) is solved iteratively, as in Problem I, enabling a new approximation for F’(q) to be produced. 
The converged profile of F’(q) is integrated again and the new profiles of F’(q) and F(q)  are then 
used to solve the equations (48) and (49), using the same algorithm but without iterations now, 
producing thus a new approximation for G(q)  and Q). Next, the computational procedure 
reverts to its starting point using the most current distributions of F’(q), G(q) and 8(q) as inputs. 
This process is continued until final convergence of the solution is attained viz. the changes in 
F”(O), - G(0) and - W(0) are with the given tolerance E. The whole numerical procedure is shown 
in the flow-chart of Figure 1. 

In the numerical computations, a proper step size Aq and an appropriate q ,  value (an 
approximation to q =  00 in the free stream) must be determined, usually by a trial-and-error 
approach. It is known that the location of the boundary-layer edge, tf,, is strongly dependent on 
the Prandtl number Pr. In general, if the appropriate tf, value is not known, it is advantageous to 
start the computation by using a small value of q ,  (say, 4 or smaller) and then successively 
increase the tf, value until convergence is obtained, the criterion being the stability of the 
physically important gradients F”(O), - G(0) and - O’(0). Once a proper tf, value is determined, 
a check of the effect of step size h= Aq on the numerical values of the above-mentioned gradients 
should be conducted. Usually, a step size of Aq=0-025 was sufficient to provide accurate 
numerical results in all problems under consideration. It should be noted that although experi- 
ence has shown that by forward integration in conjuction with a shooting method, too small or 
too large an q ,  value, will give rise to difficulties in convergence, but in our case we did not face 
such a problem. The stability is the main characteristic of our numerical technique. 

2.6 

+ 2.4 

f ( l l )  2.2 

2 

1.8 

1.6 

1.4 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 

0 2 4 6 
r l +  

Figure 2. The first six approximative curves for the velocity profile F’(q), of Problem 111, for linear variation of the guessed 
temperature [0(q)] and angular velocity profiles [G(q)] 
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On the other hand, although finite difference methods generally require more work to obtain 
a specified accuracy compared to the classic forward integration schemes in conjuction with 
a shooting method, the computational efficiency of our method is quite satisfactory. 
Figure 2 shows the first six approximative curves for the velocity profile F’(q) of Problem 111, 
for linear variation of the guessed dimensionless temperature [O(q ) ]  and angular velocity profiles 
[G(q)]. It is evident that convergence to the solution is very fast. 

4. REPRESENTATIVE RESULTS AND DISCUSSION 

To test the accuracy and the applicability of our method, some numerical calculations were 
carried out for different values of the dimensionless parameters in the problems under considera- 
tion. Our representative results are shown in Figures 3-7 and in Tables I-V. 

4.1. Problem I 

Table I shows the values of the normalized maximum temperature O(0) for s = 1 and for various 
values of Prandtl number Pr. Case I corresponds to the results obtained by Wang,* using the 
fifth-order Runge-Kutta-Fehlberg method in conjuction with a two-dimensional shooting 
method, whereas case I1 corresponds to the results obtained by the technique presented here. 
From this table one can see that our results are in a very good agreement with those obtained by 
Wang,8 since the maximum relative error is less than 0.27% (Pr=200). Table I1 shows the initial 
and final values of the flow field and the maximum temperature O(0) for various values of 
parameter s and Prandtl number Pr. The maximum relative error in this case is less than 0.078% 
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Figure 3. Similarity temperature function B(q) for various Prandtl numbers Pr (s= 1) 
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Figure 4. Variation of the dimensionless velocity profiles F(q) for different values of the mass transfer parameter MP. 
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Figure 5. Velocity distribution (buoyancy-assisted case) 
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Figure 6. Temperature distribution (buoyancy-assisted case) 
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Figure 7. Microrotation distribution (buoyancy-assisted case) 
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Table I. Values of the normalized maximum temperature O(0) for s= 1 and various Prandtl numbers 

Pr 007 0 2  0 7  2 7 20 70 200 
NO)  

Case I 2.3554 2-5224 30915 4.2706 7-4326 12.9880 26.9690 51.3830 
Case I1 2.3599 2.5254 3.0929 4.2714 7.4341 12.9938 27.0004 51.5215 

Table 11. Initial and final values of the flow field and maximum 
temperature O(0) for various values of s and Pr 

s = 1.25 

Case I 0.5736 
F ( 0 )  Case I1 0.5736 

Case I - 0.6864 
G'(0) Case I1 - 0,6864 

Case I 0.4060 
F ( a )  Case I1 0.4068 

s=1.5 5=2 

0-6307 07317 
0.6306 0.7316 

-0.7503 -0.8641 
-0.7504 -0.8642 

03777 0.3366 
0-3791 0.3371 

Case I 
0.2 Case I1 

Case I 
0.7 Case I1 

Case I 
2 Case I1 

Case I 
7 Case I1 

Case I 
20 Case I1 

2.7424 
2.7397 

3.3553 
3.3546 

4,629 1 
4,6293 

8.045 1 
8.0466 

14.044 
14.0510 

2.9447 
2-9398 

3 m  
3.5987 

4,963 1 
4.9631 

8-6 1 69 
8.61 89 

15,030 
15.0404 

3.3080 
3.3058 

4.0455 
4.0449 

53734 
5.5737 

9.6642 
9.6672 

16838 
16.8551 

Table 111. Wall shear stress and Nusselt number for pure 
free convection from a horizontal impermeable (MP = 0) 

plate for different Prandtl numbers 

F (0) - B (0) 

Pr Case I Case I1 Case I Case I1 

0.7 1 0,8907 0.9033 0.5923 0.5900 
1 0.7870 0.7939 06472 0.6472 
10 0.3320 0.3349 1.1329 1.1329 

p(0)=(6.25)1i5 u3/5 F ( 0 )  a=Pr/(l +Pr) 
8(0)=(12.5 uPr)'15 B(0) 
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Table IV. Local friction factor, wall couple stress and Nusselt number for n= 1 (linear variation of 
the wall temperature) 

Pr 1 A  

0.7 0.5 0.5 
1.5 
4.5 

1.5 05 
1.5 
4.5 

~ ~ ~~ 

Buoyancy-opposed flow 

Case I 

F ( 0 )  

0.59849 
0.48659 
0933474 
059974 
0.49 160 
0.34427 

- G ( O )  

0.04054 
0.10168 
0.20183 
001743 
0.04569 
0.099 16 

- 8 (0) 

0.60899 
0-57764 
0.5 3060 
0.60887 
0.57678 
0.52659 

F(0)  

0.59849 
0.48658 
0.33473 
059974 
0.49 158 
0.34418 

- G ( O )  

0.04054 
0.10168 
0.20182 
0-01743 
0.04569 
0-099 1 5 

-@(O) 

060898 
057765 
0.53059 
060889 
057678 
0.52659 

10.0 0.5 0.5 0.79971 0.04602 1.66850 0.79974 0.04602 1.66886 
1.5 0.62968 0,11547 1-55074 0-62969 0.11547 1.55102 
4.5 0.41589 0.23050 1-37784 0.41587 0.23047 1.37800 

1.5 0.5 0,80098 0.01926 1.66861 0.80101 0.01926 1.66899 
1-5 063495 0.05045 1-55080 0.63494 0.05045 1.55106 
4.5 0.42644 0.11003 1.37422 0.42645 0.11003 1.37441 

Table V. Local friction factor, wall couple stress and Nusselt number for n= 1 (linear variation of 
the wall temperature) 

Buoyancy-assisted flow 

Case I Case I1 

Pr 1 A F ( 0 )  - G ( O )  -O'(O) F"(0) - G ( O )  -W(O)  

0.7 0.5 05 
1.5 
4.5 

1.5 0.5 
1.5 
4.5 

10.0 0.5 0.5 
1.5 
4.5 

1.5 0.5 
1.5 
4-5 

1.36189 
1.01633 
0.62920 
1.36310 
1.02 165 
064102 
1.19444 
0.89489 
0.55822 
1.19563 
0.90002 
0-56923 

005452 
0.13631 
0.27581 
0.02186 
0.05725 
0.12604 
0.05000 
0.12545 
0.25228 
0.02045 
005350 
0.11716 

072379 
0.67393 
060227 
0.72368 
0.67 3 1 9 
0.59863 
1.82076 
1.67286 
1.46440 
1-82082 
1.6728 1 
1.46107 

1.36 189 
1.01633 
0-62919 
1.36310 
1-02164 
0.64103 
1-19438 
0.89486 
055819 
1.19557 
0.89999 
0.56920 

0.05425 
0.13631 
0.27579 
0.02 186 
0.05725 
0.12604 
0-0500 1 
0.12546 
0.25226 
0.02045 
0.05 3 50 
0.11716 

0.72383 
0.67395 
060228 
072371 
0-67323 
059865 
1.82120 
1.67322 
1.46462 
1.82187 
1.67316 
1.46129 

(s=2, Pr= 20). It is worth noting that the maximum error between cases I and I1 is presented for 
the largest value of the Prandtl number Pr. Finally, Figure 3 shows the variation of dimensionless 
temperature O(q) for various values of Prandtl number Pr at s= l .  It is observed that the 
temperature field in our case is exactly the same as that of Wang.* 
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4.2. Problem II 
In this case the problem under consideration is the special case of the pure free convection 

(c = 1) on a heated plate ( z  = 1) with uniform surface temperature (UST case) and with non-linear 
fluid injection or suction. So, the only dimensionless parameters entering into this problem are 
the Prandtl number Pr and the mass transfer (blowing/suction) parameter MP. The value MP =O 
corresponds to an impermeable plate. The numerical results obtained by our approximation 
technique (case 11), are compared with data published by Wang and Kleinstreuer' (case I), for 
special case studies, and are presented in Table I11 and Figure 4. So, Table I11 shows the values of 
the dimensionless coefficients F(0) and -@(O) for the wall shear stress and Nusselt number, 
respectively, for different values of the Prandtl number Pr, for both cases I and 11. On the other 
hand, Figure 4 shows the variation of the dimensionless velocity profiles F'(q) on an isothermal 
horizontal plate for pure free convection for different values of the mass transfer parameter MP. 
From Table I11 one can see that the values of the dimensionless coefficient -@(O) (Nusselt 
number), obtained by the numerical technique presented here (case 11), are in excellent agreement 
with those of case I, whereas the maximum relative error in the values of the wall stress coefficient 
F(O), is less than 1-41 % . 

4.3. Problem III 

This is a representative problem for applying our numerical technique and verifying its 
applicability and effectiveness. Hence, a more detailed analysis is presented in this case and our 
representative results are shown in Figures 5-7 and in Tables IV and V. Figures 5,6 and 7 show 
the variation of the velocity profile F'(q),  temperature profile O ( q )  and microrotation profile G(q),  
respectively, for the isothermal wall (n=O) and the buoyancy assisted case. Tables IV and V show 
the variations of the local friction factor F"(O), the wall couple stress - G ( O )  and Nusselt number 
-el(O), for buoyancy opposed and buoyancy assisted flow, respectively, and for the case of the 
linear variation of the wall temperature (n= 1). Case I corresponds to the results obtained by 
Merson's method, while case I1 corresponds to the results obtained by the method presented here. 

The behaviour of the flow field, for the problem under consideration, has been extensively 
studied by Hassanien and G ~ r l a , ~  and hence further discussion would appear to be redundant. 
Consequently, we restrict attention to the accuracy of the obtained results. A detailed examina- 
tion of the values of the physically important gradients F"(O), - G ( O )  and W(0) in Table IV 
or V for Cases I and 11, proves that our results are in excellent agreement with those obtained by 
the above-mentioned authors, since the maximum error is less than 003%. 

5. CONCLUSIONS 

This work has shown that the described numerical technique is capable of solving a wide class of 
two-point boundary value similarity problems in fluid mechanics. It is based on the common 
finite difference method with central differencing, a tridiagonal matrix manipulation and an 
iterative procedure. So, it can be programmed and applied easily. The whole numerical scheme is 
stable, accurate and rapidly converging. These facts suggest this is a powerful and accurate 
method suitable for application to a wide class of two-point boundary value similarity problems 
in fluid mechanics. 
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